Saturday, February 8, 2025

 N Bob Pendlum with parallel computing

import numpy as np
import matplotlib.pyplot as plt
from matplotlib.animation import FuncAnimation
from concurrent.futures import ThreadPoolExecutor

# Constants
L = 1.0 # Length of each pendulum segment
M = 1.0 # Mass of each pendulum segment

# Derivatives function
def derivs(state, num_pendulums, gravity):
dydx = np.zeros_like(state)
angles = state[:num_pendulums]
velocities = state[num_pendulums:]

for i in range(num_pendulums):
if i == 0:
dydx[i] = velocities[i]
dydx[i + num_pendulums] = -gravity / L * np.sin(angles[i])
else:
dydx[i] = velocities[i]
dydx[i + num_pendulums] = -gravity / L * (np.sin(angles[i]) - np.sin(angles[i - 1]))

return dydx

# Integration function
def integrate(state, dt, num_pendulums, gravity):
return state + dt * derivs(state, num_pendulums, gravity)

# Input from the user
num_pendulums = int(input("Enter the number of pendulums: "))
gravity = float(input("Enter the gravitational acceleration (m/s^2): "))

# Initial conditions
initial_angles = [np.pi / 2 for _ in range(num_pendulums)]
initial_velocities = [0 for _ in range(num_pendulums)]
state = np.array(initial_angles + initial_velocities, dtype='float64')
dt = 0.01
t = np.arange(0, 20, dt)

# Animation setup
fig, ax = plt.subplots(figsize=(8, 8))
max_length = num_pendulums * L
ax.set_xlim(-max_length, max_length)
ax.set_ylim(-max_length, max_length)

# Adjust line and bob thickness based on the number of pendulums
line_thickness = max(1, 6 - num_pendulums)
bob_size = max(1, 10 - num_pendulums)

lines, = ax.plot([], [], 'o-', lw=line_thickness, markersize=bob_size)

# Initialize the plot
def init():
lines.set_data([], [])
return lines,

# Update function for animation
def update(frame):
global state
with ThreadPoolExecutor() as executor:
futures = [executor.submit(integrate, state, dt, num_pendulums, gravity) for _ in range(1)]
for future in futures:
state = future.result()

x = np.cumsum([L * np.sin(angle) for angle in state[:num_pendulums]])
y = np.cumsum([-L * np.cos(angle) for angle in state[:num_pendulums]])
lines.set_data([0] + x.tolist(), [0] + y.tolist())
return lines,

ani = FuncAnimation(fig, update, frames=len(t), init_func=init, blit=True, interval=10)
plt.show()

 import numpy as np

import matplotlib.pyplot as plt
from mpmath import zetazero, zeta, findroot

def plot_riemann_zeta_zeros(n_zeros):
"""Plot the first n_zeros non-trivial zeros of the Riemann zeta function."""
# Get the first n_zeros non-trivial zeros
zeros = [zetazero(n) for n in range(1, n_zeros + 1)]
real_parts = [zero.real for zero in zeros]
imaginary_parts = [zero.imag for zero in zeros]

# Plot the zeros on the complex plane
plt.figure(figsize=(10, 6))
plt.scatter(real_parts, imaginary_parts, color='red', marker='x', label='Non-trivial zeros')
plt.axhline(0, color='black', lw=0.5)
plt.axvline(0.5, color='blue', lw=0.5, linestyle='--', label='Critical Line (Re=0.5)')
plt.xlabel('Real Part')
plt.ylabel('Imaginary Part')
plt.title('Non-trivial Zeros of the Riemann Zeta Function')
plt.legend()
plt.grid(True)
plt.show()

# Example usage
plot_riemann_zeta_zeros(200)

 Python: Butterfly effect graph 3D


import numpy as np
import matplotlib.pyplot as plt
from matplotlib.animation import FuncAnimation

# Constants
sigma = 10.0
rho = 28.0
beta = 8.0 / 3.0

# Time parameters
dt = 0.01
num_steps = 10000

# Initial conditions
x0, y0, z0 = 0.0, 1.0, 1.05

# Arrays to store trajectories
x = np.empty(num_steps + 1)
y = np.empty(num_steps + 1)
z = np.empty(num_steps + 1)
x[0], y[0], z[0] = x0, y0, z0

# Lorenz system equations
def lorenz(x, y, z, sigma, rho, beta):
dx = sigma * (y - x)
dy = x * (rho - z) - y
dz = x * y - beta * z
return dx, dy, dz

# Integrate the Lorenz equations
for i in range(num_steps):
dx, dy, dz = lorenz(x[i], y[i], z[i], sigma, rho, beta)
x[i + 1] = x[i] + dx * dt
y[i + 1] = y[i] + dy * dt
z[i + 1] = z[i] + dz * dt

# Animation setup
fig = plt.figure(figsize=(10, 7))
ax = fig.add_subplot(111, projection='3d')
ax.set_xlim(-20, 20)
ax.set_ylim(-30, 30)
ax.set_zlim(0, 50)
line, = ax.plot([], [], [], lw=2)
plt.title('Lorenz Attractor')

def init():
line.set_data(np.array([]), np.array([]))
line.set_3d_properties(np.array([]))
return line,

def update(frame):
line.set_data(x[:frame], y[:frame])
line.set_3d_properties(z[:frame])
return line,

ani = FuncAnimation(fig, update, frames=num_steps, init_func=init, blit=True, interval=1)
plt.show()

 Python Deli Prof

import numpy as np
import sympy as sp
import decimal
from decimal import Decimal, getcontext
import matplotlib.pyplot as plt

# Sayısal Integral Hesaplama Fonksiyonu
def numerical_integral():
func_expr = input("Enter the function f(x) to integrate: ")
try:
func = eval("lambda x: " + func_expr, {"__builtins__": None},
{"np": np, "sin": np.sin, "cos": np.cos, "exp": np.exp, "log": np.log, "sqrt": np.sqrt})
a = float(input("Enter the lower limit of integration (a): "))
b = float(input("Enter the upper limit of integration (b): "))
x = np.linspace(a, b, 1000)
y = func(x)
integral_value = np.trapz(y, x)
print(f"The integral of the function from {a} to {b} is approximately {integral_value}")
except Exception as e:
print(f"Error in evaluating the function: {e}")

# Sembolik Integral Hesaplama Fonksiyonu
def symbolic_integral():
x = sp.symbols('x')
function_expr = input("Enter the function f(x) to integrate: ")
try:
func = sp.sympify(function_expr)
integral = sp.integrate(func, x)
print(f"The integral of {sp.pretty(func)} with respect to x is:")
print(sp.pretty(integral))
except Exception as e:
print(f"Error in evaluating the function: {e}")

# Asal Sayıları Bulma Fonksiyonu
def find_primes():
start = int(input("Enter the starting number of the range: "))
end = int(input("Enter the ending number of the range: "))
primes = []
for num in range(start, end + 1):
is_prime = all(num % i != 0 for i in range(2, int(num ** 0.5) + 1))
if is_prime and num > 1:
primes.append(num)
print(f"Prime numbers between {start} and {end} are: {primes}")

# İkiz Asal Sayıları Bulma Fonksiyonu
def find_twin_primes():
start = int(input("Enter the starting number of the range: "))
end = int(input("Enter the ending number of the range: "))
twin_primes = []
primes = []
for num in range(start, end + 1):
is_prime = all(num % i != 0 for i in range(2, int(num ** 0.5) + 1))
if is_prime and num > 1:
primes.append(num)
for i in range(len(primes) - 1):
if primes[i + 1] - primes[i] == 2:
twin_primes.append((primes[i], primes[i + 1]))
print(f"Twin prime numbers between {start} and {end} are: {twin_primes}")
# Kuvvet Hesaplama Fonksiyonu
def high_precision_power():
base = Decimal(input("Enter the base number: "))
exponent = Decimal(input("Enter the exponent: "))
precision = int(input("Enter the number of decimal places: "))
getcontext().prec = precision + 2 # Ekstra iki hane daha doğru sonuçlar için
result = base ** exponent
print(f"The result of {base} raised to the power of {exponent} to {precision} decimal places is:")
print(f"{result:.{precision}f}")

# Kök Bulma (Root Finding) Fonksiyonu
def root_finding():
x = sp.symbols('x')
function_expr = input("Enter the function f(x): ")
func = sp.sympify(function_expr)
initial_guess = float(input("Enter an initial guess: "))
root = sp.nsolve(func, x, initial_guess)
print(f"A root of the function is: {root}")

# İstatistiksel Analiz Fonksiyonu
def statistical_analysis():
data = list(map(float, input("Enter the data set (comma-separated): ").split(',')))
mean = np.mean(data)
median = np.median(data)
std_dev = np.std(data)
print(f"Mean: {mean}, Median: {median}, Standard Deviation: {std_dev}")
# Eğri Uydurma (Curve Fitting) Fonksiyonu
def curve_fitting():
x_data = list(map(float, input("Enter the x data points (comma-separated): ").split(',')))
y_data = list(map(float, input("Enter the y data points (comma-separated): ").split(',')))
degree = int(input("Enter the degree of the polynomial to fit: "))
coeffs = np.polyfit(x_data, y_data, degree)
poly = np.poly1d(coeffs)
print(f"Fitted polynomial: {poly}")

# Diferansiyel Denklemler Çözme Fonksiyonu
def solve_differential_equation():
x = sp.symbols('x')
y = sp.Function('y')
eq = input("Enter the differential equation (in terms of y(x)): ")
deqn = sp.sympify(eq)
solution = sp.dsolve(deqn, y(x))
print(f"The solution is: {solution}")

# Matris İşlemleri Fonksiyonu
def matrix_operations():
rows = int(input("Enter the number of rows for the matrix: "))
cols = int(input("Enter the number of columns for the matrix: "))
print("Enter the elements of the matrix row-wise:")
matrix = [[float(input()) for _ in range(cols)] for _ in range(rows)]
mat = np.array(matrix)
determinant = np.linalg.det(mat)
inverse = np.linalg.inv(mat) if determinant != 0 else None
print(f"Determinant: {determinant}")
print(f"Inverse: {inverse}" if inverse is not None else "Inverse does not exist.")
# Kompleks Sayı İşlemleri Fonksiyonu
def complex_number_operations():
z1 = complex(input("Enter the first complex number (in the form a+bj): "))
z2 = complex(input("Enter the second complex number (in the form a+bj): "))
print(f"Sum: {z1 + z2}")
print(f"Difference: {z1 - z2}")
print(f"Product: {z1 * z2}")
print(f"Quotient: {z1 / z2}")

# Fonksiyon Grafikleme Fonksiyonu
def plot_function():
x = sp.symbols('x')
func_expr = input("Enter the function f(x) to plot: ")
func = sp.sympify(func_expr)
f = sp.lambdify(x, func, modules=['numpy'])
x_vals = np.linspace(-10, 10, 400)
y_vals = f(x_vals)
plt.plot(x_vals, y_vals)
plt.title(f'Plot of {func_expr}')
plt.xlabel('x')
plt.ylabel('f(x)')
plt.grid(True)
plt.show()

# Rasgele Sayı Üretimi Fonksiyonu
def random_number_generation():
dist = input("Enter the distribution (uniform/normal): ")
n = int(input("Enter the number of random numbers to generate: "))
if dist == "uniform":
low = float(input("Enter the lower bound: "))
high = float(input("Enter the upper bound: "))
random_numbers = np.random.uniform(low, high, n)
elif dist == "normal":
mean = float(input("Enter the mean: "))
std_dev = float(input("Enter the standard deviation: "))
random_numbers = np.random.normal(mean, std_dev, n)
else:
print("Invalid distribution.")
return
print(f"Generated random numbers: {random_numbers}")


# Fourier ve Laplace Dönüşümleri Fonksiyonu
def fourier_laplace_transforms():
x = sp.symbols('x')
t = sp.symbols('t', real=True)
func_expr = input("Enter the function f(t) for Fourier and Laplace transforms: ")
func = sp.sympify(func_expr)

fourier_transform = sp.fourier_transform(func, t, x)
laplace_transform = sp.laplace_transform(func, t, x)

print(f"Fourier Transform: {sp.pretty(fourier_transform)}")
print(f"Laplace Transform: {sp.pretty(laplace_transform[0])}")


# Finansal Hesaplamalar Fonksiyonu
def financial_calculations():
print("\nChoose a financial calculation to perform:")
print("1: Simple Interest")
print("2: Compound Interest")
choice = input("Enter your choice: ")

if choice == '1':
principal = float(input("Enter the principal amount: "))
rate = float(input("Enter the annual interest rate (in %): "))
time = float(input("Enter the time (in years): "))
simple_interest = (principal * rate * time) / 100
print(f"Simple Interest: {simple_interest}")

elif choice == '2':
principal = float(input("Enter the principal amount: "))
rate = float(input("Enter the annual interest rate (in %): "))
time = float(input("Enter the time (in years): "))
n = int(input("Enter the number of times interest applied per year: "))
compound_interest = principal * (1 + rate / (n * 100)) ** (n * time)
print(f"Compound Interest: {compound_interest}")

else:
print("Invalid choice.")


# Graf Teorisi Fonksiyonu
def graph_theory():
import networkx as nx
G = nx.Graph()
n = int(input("Enter the number of nodes: "))
print("Enter the edges (format: node1 node2): ")
for _ in range(n):
u, v = map(int, input().split())
G.add_edge(u, v)

nx.draw(G, with_labels=True)
plt.show()


# Kriptografi Fonksiyonu
def cryptography():
print("\nChoose a cryptographic function:")
print("1: Caesar Cipher")
print("2: RSA Encryption")
choice = input("Enter your choice: ")

if choice == '1':
text = input("Enter the text to encrypt: ")
shift = int(input("Enter the shift value: "))
encrypted = ''.join([chr((ord(char) + shift - 97) % 26 + 97) if char.islower() else char for char in text])
print(f"Encrypted Text: {encrypted}")

elif choice == '2':
import rsa
(pubkey, privkey) = rsa.newkeys(512)
message = input("Enter the message to encrypt: ").encode('utf8')
encrypted = rsa.encrypt(message, pubkey)
print(f"Encrypted Message: {encrypted}")
decrypted = rsa.decrypt(encrypted, privkey).decode('utf8')
print(f"Decrypted Message: {decrypted}")

else:
print("Invalid choice.")


# Birim Dönüşümleri Fonksiyonu
def unit_conversion():
print("\nChoose a unit conversion:")
print("1: Length")
print("2: Mass")
print("3: Volume")
choice = input("Enter your choice: ")

if choice == '1':
value = float(input("Enter the length in meters: "))
print(f"{value} meters is {value * 100} centimeters")
print(f"{value} meters is {value / 1000} kilometers")

elif choice == '2':
value = float(input("Enter the mass in kilograms: "))
print(f"{value} kilograms is {value * 1000} grams")
print(f"{value} kilograms is {value / 1000} metric tons")

elif choice == '3':
value = float(input("Enter the volume in liters: "))
print(f"{value} liters is {value * 1000} milliliters")
print(f"{value} liters is {value / 1000} cubic meters")

else:
print("Invalid choice.")


# Olasılık Hesaplamaları Fonksiyonu
def probability_calculations():
print("\nChoose a probability calculation:")
print("1: Binomial Probability")
print("2: Normal Distribution Probability")
choice = input("Enter your choice: ")

if choice == '1':
n = int(input("Enter the number of trials: "))
p = float(input("Enter the probability of success: "))
k = int(input("Enter the number of successes: "))
binom_prob = sp.binomial(n, k) * (p ** k) * ((1 - p) ** (n - k))
print(f"Binomial Probability: {binom_prob}")

elif choice == '2':
mean = float(input("Enter the mean: "))
std_dev = float(input("Enter the standard deviation: "))
x = float(input("Enter the value: "))
normal_prob = (1 / (std_dev * np.sqrt(2 * np.pi))) * np.exp(-0.5 * ((x - mean) / std_dev) ** 2)
print(f"Normal Distribution Probability: {normal_prob}")

else:
print("Invalid choice.")
# Program Seçim Fonksiyonu
def choose_program():
print("\nChoose a program to run:")
print("1: Numeric Integration")
print("2: Symbolic Integration")
print("3: Prime Numbers within Range")
print("4: Twin Prime Numbers within Range")
print("5: Solve N-Variable Linear Equations")
print("6: Matrix Multiplication")
print("7: High Precision Power Calculation")
print("8: Root Finding")
print("9: Statistical Analysis")
print("10: Curve Fitting")
print("11: Solve Differential Equations")
print("12: Matrix Operations")
print("13: Complex Number Operations")
print("14: Plot Functions")
print("15: Random Number Generation")
print("16: Fourier and Laplace Transforms")
print("17: Financial Calculations")
print("18: Graph Theory")
print("19: Cryptography")
print("20: Unit Conversions")
print("21: Probability Calculations")
print("22: Exit")
choice = input("Enter your choice: ")
return choice

# Ana Program Döngüsü
def solve_linear_equations():
pass


def matrix_multiplication():
pass


def main():
while True:
choice = choose_program()

if choice.isdigit():
choice = int(choice)
else:
print("Invalid input. Please enter a number.")
continue

if choice == 1:
numerical_integral()

elif choice == 2:
symbolic_integral()

elif choice == 3:
find_primes()

elif choice == 4:
find_twin_primes()

elif choice == 5:
solve_linear_equations()

elif choice == 6:
matrix_multiplication()

elif choice == 7:
high_precision_power()

elif choice == 8:
root_finding()

elif choice == 9:
statistical_analysis()

elif choice == 10:
curve_fitting()

elif choice == 11:
solve_differential_equation()

elif choice == 12:
matrix_operations()

elif choice == 13:
complex_number_operations()

elif choice == 14:
plot_function()

elif choice == 15:
random_number_generation()

elif choice == 16:
fourier_laplace_transforms()

elif choice == 17:
financial_calculations()

elif choice == 18:
graph_theory()

elif choice == 19:
cryptography()

elif choice == 20:
unit_conversion()

elif choice == 21:
probability_calculations()

elif choice == 22:
print("Exiting the program.")
break

else:
print("Invalid choice. Please select a valid program number.")

if __name__ == "__main__":
main()

 import numpy as np

import matplotlib.pyplot as plt
from matplotlib.animation import FuncAnimation

# User input for grid dimensions
grid_size_x = int(input("Enter the number of rows for the grid: "))
grid_size_y = int(input("Enter the number of columns for the grid: "))
frames = 100
Python Life Game

# Initialize grid with random cells
grid = np.random.choice([0, 1], size=(grid_size_x, grid_size_y), p=[0.8, 0.2])

def update_grid(grid):
"""Apply Conway's Game of Life rules to update the grid."""
new_grid = grid.copy()
for i in range(grid_size_x):
for j in range(grid_size_y):
# Count the number of live neighbors
neighbors = sum([
grid[i, (j-1)%grid_size_y], grid[i, (j+1)%grid_size_y],
grid[(i-1)%grid_size_x, j], grid[(i+1)%grid_size_x, j],
grid[(i-1)%grid_size_x, (j-1)%grid_size_y], grid[(i-1)%grid_size_x, (j+1)%grid_size_y],
grid[(i+1)%grid_size_x, (j-1)%grid_size_y], grid[(i+1)%grid_size_x, (j+1)%grid_size_y]
])
# Apply the rules of Game of Life
if grid[i, j] == 1:
if neighbors < 2 or neighbors > 3:
new_grid[i, j] = 0
else:
if neighbors == 3:
new_grid[i, j] = 1
return new_grid

# Animation setup
fig, ax = plt.subplots()
img = ax.imshow(grid, cmap='binary')
plt.title("Conway's Game of Life")

def update(frame):
global grid
grid = update_grid(grid)
img.set_array(grid)
return [img]

ani = FuncAnimation(fig, update, frames=frames, blit=True, interval=200)
plt.show()

 Wall gibi python oyunu 

import pygame
import sys

# Initialize the game
pygame.init()

# Define colors
white = (255, 255, 255)
black = (0, 0, 0)
red = (255, 0, 0)
blue = (0, 0, 255)
green = (0, 255, 0)

# Display dimensions
width, height = 800, 600

# Create the display
screen = pygame.display.set_mode((width, height))
pygame.display.set_caption('Brick Breaker Game')

# Paddle dimensions
paddle_width, paddle_height = 100, 10
paddle_x, paddle_y = width // 2 - paddle_width // 2, height - 30

# Ball dimensions and speed
ball_radius = 10
ball_x, ball_y = width // 2, height // 2
ball_speed_x, ball_speed_y = 4, -4

# Brick dimensions
brick_width, brick_height = 75, 20
bricks = []
rows = 5
cols = 10

for row in range(rows):
for col in range(cols):
brick_x = col * (brick_width + 10) + 35
brick_y = row * (brick_height + 10) + 50
bricks.append(pygame.Rect(brick_x, brick_y, brick_width, brick_height))

def draw_objects():
# Draw paddle
pygame.draw.rect(screen, white, (paddle_x, paddle_y, paddle_width, paddle_height))
# Draw ball
pygame.draw.circle(screen, red, (ball_x, ball_y), ball_radius)
# Draw bricks
for brick in bricks:
pygame.draw.rect(screen, green, brick)

# Main game loop
while True:
for event in pygame.event.get():
if event.type == pygame.QUIT:
pygame.quit()
sys.exit()

# Handle paddle movement
keys = pygame.key.get_pressed()
if keys[pygame.K_LEFT] and paddle_x > 0:
paddle_x -= 6
if keys[pygame.K_RIGHT] and paddle_x < width - paddle_width:
paddle_x += 6

# Move the ball
ball_x += ball_speed_x
ball_y += ball_speed_y

# Ball collision with walls
if ball_x - ball_radius <= 0 or ball_x + ball_radius >= width:
ball_speed_x *= -1
if ball_y - ball_radius <= 0:
ball_speed_y *= -1

# Ball collision with paddle
if (paddle_y < ball_y + ball_radius < paddle_y + paddle_height and
paddle_x < ball_x < paddle_x + paddle_width):
ball_speed_y *= -1

# Ball collision with bricks
for brick in bricks[:]:
if brick.collidepoint(ball_x, ball_y):
bricks.remove(brick)
ball_speed_y *= -1

# Ball out of bounds
if ball_y + ball_radius >= height:
ball_x, ball_y = width // 2, height // 2
ball_speed_x, ball_speed_y = 4, -4
bricks = [pygame.Rect(col * (brick_width + 10) + 35, row * (brick_height + 10) + 50,
brick_width, brick_height) for row in range(rows) for col in range(cols)]

# Refresh screen
screen.fill(black)
draw_objects()
pygame.display.flip()

# Frame rate
pygame.time.Clock().tick(60)

 level crossing problemi, birçok bilimsel ve uygulamalı disiplinle ilişkilidir. İşte bazı örnekler:


1. Finans ve Ekonomi

Finansal Modeller: Hisse senedi fiyatları, döviz kurları ve diğer finansal varlıkların dalgalanmaları stokastik süreçlerle modellenir. Bu modellerde, belirli seviyelerin geçilme sıklığı önemli bir analiz konusudur.


Risk Yönetimi: Kazanç ve zararların zaman içindeki değişimini anlamak, risklerin yönetilmesinde ve yatırım stratejilerinin geliştirilmesinde kullanılır.


2. İstatistik ve Olasılık Teorisi

Stokastik Süreçler: Brownian hareketi, Poisson süreci ve diğer stokastik süreçler, level crossing olaylarını incelemek için kullanılır.


Olasılık Dağılımları: Belirli bir seviyenin geçilme olasılığı, olasılık dağılımları ve yoğunluk fonksiyonları ile analiz edilir.


3. Fizik ve Mühendislik

Sinyal İşleme: Gürültü ve sinyallerin analizi, belirli seviyelerin geçilme sıklığını incelemek için önemlidir.


Dinamik Sistemler: Fiziksel sistemlerin dinamik davranışları ve kritik seviyeleri geçme olasılıkları incelenir.


4. Matematik ve Matematiksel Finans

Diferansiyel Denklemler: Stokastik diferansiyel denklemler, stokastik süreçlerin dinamiklerini ve seviyelerin geçilme sıklıklarını modellemek için kullanılır.


Matematiksel Modelleme: Finansal varlıkların ve diğer stokastik süreçlerin matematiksel modelleri, belirli seviyelerin geçilme sıklığını anlamak için geliştirilir.


5. Biyoloji ve Tıp

Popülasyon Dinamikleri: Biyolojik popülasyonların zaman içindeki dinamikleri ve belirli kritik seviyelerin geçilme olasılıkları incelenir.


Tıbbi Araştırmalar: Biyolojik sinyallerin analizi, hastalıkların tanı ve tedavisinde belirli seviyelerin geçilme sıklığını incelemek için kullanılır.


6. Bilgisayar Bilimi ve Yapay Zeka

Makine Öğrenmesi: Zaman serisi analizi ve öngörü, belirli seviyelerin geçilme olasılığını tahmin etmek için kullanılır.


Simülasyon: Stokastik süreçlerin simülasyonları, belirli seviyelerin geçilme sıklığını incelemek için yapılır.